6.3. NASTAWIANIE SYGNALOW
 NA SYGNALIZATORACH MECHANICZNYCH

W celu zagwarantowania pewności nastawiania elementów sygnalizacyjnych na sygnalizatorach, nastawcze zespoły sygnałowe powinny spełniać następujące warunki:

1) elementy sygnalizacyjne nastawiane przez zespół nastawczy powinny być w położeniach końcowych tak ustalone, aby umożliwiona była zmiana ich położenia tylko za pomocą zespołu nastawczego;
2) zamykanie elementów sygnalizacyjnych w położeniu „stój" na sygnalizatorze przytorowym powinno być realizowane przez zamknięcie dźwigni sygnałowej w nastawnicy;
3) straty przesuwu pędni nie powinny mieć wpływu na prawidłowość wskazań sygnalizatora;
4) zerwanie jednego ciągu pędni na odcinku, w którym znajduje się napreężacz, powinno spowodować ustawienie się elementów sygnalizacyjnych w położeniu wskazującym sygnał bardziej bezpieczny dla ruchu;
5) konstrukcja napędów sygnałowych powinna umożliwiać włączenie dwóch napędów sygnałowych w jedną pędnię; w przypadku zerwania jednego ciągu pędni między napędami sygnałowymi powinno być możliwe w dalszym ciągu podawanie sygnałów na pierwszym sygnalizatorze, przy ustawieniu drugiego sygnalizatora w położeniu zasadniczym;
6) ramiona sygnalizatorów i dyski tarcz ostrzegawczych mogą być nastawiane rów-
nież przy współudziale sprzęgieł elektromagnetycznych, które powodują samoczynne ich przejście do położenia zasadniczego lub wzajemne uzależnienie.
Nastawczy zespół sygnałowy obejmuje dźwignię sygnałową, pędnię sygnałową i jeden lub dwa napędy sygnałowe. Poza tym zespół nastawczy może służyć do nastawiania jedną dźwignią sygnałową dwóch wskazań na sygnalizatorze lub dwiema dźwigniami sygnałowymi sprzężonymi - trzech sygnałów na sygnalizatorze. Mamy więc pojedynczy i podwójny zespół nastawczy sygnałowy.

W podwójnym zespole nastawia się trzy wskazania, na przykład na semaforze wjazdowym dwuramiennym i odnoszącej się do niego tarczy ostrzegawczej (rys. 6.7).
 3 - naped semafora, 4 - naped tarczy ostrzegawezej

Naprẹzacze w pędniach sygnałow około 750 N (75 kG), i wyrównujaciąg w obiany ob pednı pows a czasie zerwania jednego clągu do położenia zabraniającegaja e menty sygnalizacyjne na z dwoma napędami sygnałowymi w jednej jaze W zespołach nastawczy 6.7, naprężacz doprowadza oba sygnalizatory do ped jak to pokazano cego sygnał zabraniajaçy jazdę tylko wówczas, gdy ${ }^{\text {ostan }}$ żenia wskazujacedni w pierwszym odcinku. Natomiast w razie zerwania ped zerwany ciąg porem a tarczą napęd doprowadza tarczę ostrzegawcza do poly można było nadal obsługiwać semafor dźwigniamı sygnałowymi

Dźwignie sygnałowe w wyniku przesuwu pędni obracają tarcze linkowe napędów. Napędy sygnałowe przenoszą ruch pędni na elementy sygnalizacyjne (ruchome dyski) sygnalizatorów. Skok nastawczy pędni wynosi 500 mm .

Do nastawiania sygnalizatorów dwustawnych używa się pojedynczych dźwigni sygnałowych (rys. 6.8), a do sygnalizatorów trzystawnych - dwu dźwigni sprzężonych ze sobą mechanicznie (rys. 6.9). Dźwignie sygnałowe nie są rozprzęgalne.

Dźwignia sygnałowa, podobnie jak dźwignie zwrotnicowa, wykolejnicowa i ryglowa, ma pręt zapadkowy, który łączy ją z podstawą w położeniach krańcowych: górnym i dolnym, porusza poprzeczke w skrzyni zależności oraz tworzy sztywne połączenie trzonu dźwigni z tarczą linkową w czasie przestawiania dźwigni. Ponadto porusza suwak sygnałowy w skrzyni zależności.

Jeżeli za pomocą zespołu nastawczego są przekazywane sygnały na tarczy ostrzegawczej odnoszącej się do semafora obsługiwanego z innej nastawni, to tarcza ta powinna być zaopatrzona w sprzęgło elektromagnetyczne do samoczynnego podawania sygnału

Rys. 6.9. Sprzężone dźwignie sygnałowe ostrzegającego. Sprzęgło to jest konieczne do stworzenia zależności między wskazaniami semafora i jego tarczy ostrzegawczej obsługiwanej z innej nastawni.

Sprzęgła elektromagnetyczne stosuje się także na jednoramiennych semaforach wyjazdowych na szlak z blokadą liniową i stojących przy torach, po których odbywają się przebiegi bez zatrzymania przez stację.

